Paracrine signaling through MYCN enhances tumor-vascular interactions in neuroblastoma.

نویسندگان

  • Yvan H Chanthery
  • W Clay Gustafson
  • Melissa Itsara
  • Anders Persson
  • Christopher S Hackett
  • Matt Grimmer
  • Elise Charron
  • Slava Yakovenko
  • Grace Kim
  • Katherine K Matthay
  • William A Weiss
چکیده

Neuroblastoma, a tumor of peripheral neural crest origin, numbers among the most common childhood cancers. Both amplification of the proto-oncogene MYCN and increased neoangiogenesis mark high-risk disease. Because angiogenesis is regulated by phosphatidylinositol 3-kinase (PI3K), we tested a clinical PI3K inhibitor, NVP-BEZ235, in MYCN-dependent neuroblastoma. NVP-BEZ235 decreased angiogenesis and improved survival in both primary human (highly pretreated recurrent MYCN-amplified orthotopic xenograft) and transgenic mouse models for MYCN-driven neuroblastoma. Using both gain- and loss-of-function approaches, we demonstrated that the antiangiogenic efficacy of NVP-BEZ235 depended critically on MYCN in vitro and in vivo. Thus, clinical PI3K/mammalian target of rapamycin inhibitors drove degradation of MYCN in tumor cells, with secondary paracrine blockade of angiogenesis. Our data demonstrated significantly improved survival in treated animals and suggest that NVP-BEZ235 should be tested in children with high-risk, MYCN-amplified neuroblastoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sunitinib Suppress Neuroblastoma Growth through Degradation of MYCN and Inhibition of Angiogenesis

Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common and deadly extracranial tumor of childhood. The majority of high-risk neuroblastoma exhibit amplification of the MYCN proto-oncogene and increased neoangiogenesis. Both MYCN protein stabilization and angiogenesis are regulated by signaling through receptor tyrosine kinases (RTKs). Therefore, inhibitors of RT...

متن کامل

Midkine promotes neuroblastoma through Notch2 signaling.

Midkine is a heparin-binding growth factor highly expressed in various cancers, including neuroblastoma, the most common extracranial pediatric solid tumor. Prognosis of patients with neuroblastoma in which MYCN is amplified remains particularly poor. In this study, we used a MYCN transgenic model for neuroblastoma in which midkine is highly expressed in precancerous lesions of sympathetic gang...

متن کامل

Molecular and Cellular Pathobiology Midkine Promotes Neuroblastoma through Notch2 Signaling

Midkine is a heparin-binding growth factor highly expressed in various cancers, including neuroblastoma, the most common extracranial pediatric solid tumor. Prognosis of patients with neuroblastoma in whichMYCN is amplified remains particularly poor. In this study, we used a MYCN transgenic model for neuroblastoma in which midkine is highly expressed in precancerous lesions of sympathetic gangl...

متن کامل

Focal DNA Copy Number Changes in Neuroblastoma Target MYCN Regulated Genes

Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study f...

متن کامل

NLRR1 enhances EGF-mediated MYCN induction in neuroblastoma and accelerates tumor growth in vivo.

Neuronal leucine-rich repeat protein-1 (NLRR1), a type-1 transmembrane protein highly expressed in unfavorable neuroblastoma, is a target gene of MYCN that is predominately expressed in primary neuroblastomas with MYCN amplification. However, the precise biological role of NLRR1 in cell proliferation and tumor progression remains unknown. To investigate its functional importance, we examined th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science translational medicine

دوره 4 115  شماره 

صفحات  -

تاریخ انتشار 2012